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Abstract: Topological representations describing molecules undergoing permutational isomerization reactions 
are denned in detail. A theorem is proved which places an upper limit on the number of permutational isomeriza­
tion reactions which generate different topological representations for a given stereochemical system. It is shown 
how this result may be used to relate various stereochemical properties of molecules undergoing permutational 
isomerization reactions. 

In 1967, a generalized mathematical formulation was 
presented which provided homological description 

of chemical reaction networks.2 It was shown how, 
in general, algebraic complexes may be used to describe 
chemical reaction networks and how, in particular, 
a one-dimensional simplicial complex (a graph) may be 
used to describe a system of interconverting chemical 
isomers. Similar chemical application of graphs was 
first confined to complex organic systems,3 but, more 
recently, graphs have been used to describe chemical 
isomerization reactions of highly symmetric molecules. 
Various names have been used for these graphs, but 
the term "topological representation"4 shall be used 
here, keeping in mind that a topological representation 
is simply a graph where the points represent chemical 
species (isomers) and the lines represent chemical 
reactions (isomerizations). Perhaps the most thor­
oughly studied system of isomeric species is that of 
permutational isomers5 which interconvert via per­
mutational isomerization reactions.6 Many topolog­
ical representations have been constructed for these 
systems.7 However, since these graphs were con­
structed in an unsystematic fashion, there has been no 
convenient way of ascertaining whether or not all the 
possible topological representations have been con­
structed for a given system. In this paper, it will be 
shown that for the general case of a symmetric molecule 
with n skeletal positions and « unidentate substituents, 
a definite upper limit can be placed on the number of 
permutational isomerization reactions which generate 
different topological representations. 

Directed Topological Representations 

Permutational isomers are "chemical compounds 
which have in common the same molecular skeleton 
and set of ligands, differing only by the distribution of 
the ligands on the skeletal positions."5 A set of 
indexed labels, L1 = {h, I2, . . . , / „ } , is assigned to the 
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ligands8 and a set of indexed labels, %s = {su s2, . . ., sn}, 
is assigned to the skeletal positions. A permutational 
isomer may be described by a 2 X n matrix 

7 \ = / 123 . . . « 
sJ \ijk. . .1 

where the top row lists the ligand indices in an in­
creasing sequence, and below each ligand index is 
written the index of the skeletal position which that 
ligand occupies. Figure 1 illustrates the use of these 
definitions for a trigonal-bipyramidal molecule. If we 
index the skeletal positions as in Figure la and label 
ligand A with Z1, B with U, C with I3, D with L1, and E 
with U, the isomer in Figure lb is described by 

A = /12345\ 
s) ^52134/ 

We now consider the group Sn which includes alln! 
permutations of n objects. Let any permutation9 

pteSn operate on the skeletal indices listed in the bottom 
row of an (,) matrix. The effect is either to generate 
a new isomer (Figure 2a) or to rotate the molecule in 
space (Figure 2b). Operations of the former type are 
called permutational isomerization reactions; rotational 
operations of the latter type are denoted r( and are 
elements of the subgroup R of Sn. If R' is the proper 
rotational subgroup of the molecular point group, then 
?̂ is that permutation group whose elements represent 

the operations in R' and operate on the indices of the 
skeletal positions. The arrows drawn on the reactant 
isomers in Figure 2 do not define physical motions of the 
ligands but merely provide a convenient description 
of a permutation operation. For example, the arrows 

(8) It is assumed throughout this paper that all permutational isomers 
of a molecule have the same molecular point group. For the present 
discussion, this means that all ligands must be identical and distinguish­
able only by their labels. If the ligands are not all identical but are very 
similar in that the different isomers have skeletal frameworks which 
deviate only slightly from an idealized skeletal framework, then dis­
cussion may proceed by using the point group of the idealized skeletal 
framework. When ligands are not all identical, discretion must be 
used in denning an idealized skeletal framework; if the skeletal frame­
works of two isomers are significantly different, then the isomers are 
polytopal isomers,4 not permutational isomers, and the present treat­
ment may not be employed. The word "ligand" is interpreted in the 
broadest sense to include any type of substituent. 

(9) Standard permutation notation is used throughout this paper.13 

For example, (123)(4)(5) means 1 is to be replaced by 2, 2 is to be re­
placed by 3, 3 is to be replaced by 1, and 4 and 5 remain fixed. All 
products of operations are read from right to left. 

(10) W. Ledermann, "Introduction to the Theory of Finite Groups," 
Interscience, New York, N. Y., 1961, p 66. 
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(t)'( 12345 
52 I 34 

(b) 

Figure 1. The illustration (a) defines a set of indexed skeletal posi­
tions for a trigonal-bipyramidal molecule; (b) shows a set of ligands 
distributed on the skeletal positions. The matrix defines the indices 
of the ligand labels. 

describing/); = (1253)(4) mean "the ligand in position 
1 is moved to position 2, the ligand in position 2 is 
moved to position 5, the ligand in position 5 is moved 
to position 3, and the ligand in position 3 is moved to 
position 1." 

Define a reference isomer5 

(l)(243)(5)vi 

ll\ /12345% 
\ s ' " M 2 3 4 5 ' 

I1). (12345} 
W M 4 2 3 5 ' 

Figure 2. The illustration (a) describes a permutational isomeriza-
tion reaction, pi\ (b) describes a proper rotation, /-,. Skeletal posi­
tions and ligands are labeled as in Figure 1. Permutations always 
operate on the indices of the skeletal positions. 

C1. By these definitions, a directed line passes from 
d to Cj if and only if eq 1 holds for some rk,rteR. 

123.. .« 
123.. .« 

po-rK-Ci = rvC) (1) 

then all other isomers are defined by letting permuta­
tions pitSn operate on the reference isomer. For any 
PitSn, the set of operations R-pt = [rcpt, rrPu • • •, 
r,R\'Pi}> where \R\ is the order of R, is called a right 
coset of R in Sn. All the operations in this coset gen­
erate the same isomer when acting on the reference 
isomer. Choose a pjtSn such that p^R -pt. Then the 
right coset R-p} s= {rvpj, rrp}, 
an isomer different from that represented by R-pt. 
This procedure of generating right cosets is continued 
until each permutation in Sn has been assigned to a 
coset. For purposes of illustration, let the elements of 
each right coset be a row in a matrix 

Such a graph, consisting of points and directed lines, 
is called a directed topological representation. The 
adjective "directed" is included to emphasize that a 
directed line pointing from c, to ct does not in general 
imply a directed line pointing from C1 to ct. More pre­
cisely, the fact that eq 1 holds does not imply that an 
e q u a t i o n / w C j = rn-Ci holds for some rm,rneR. 

r B -Pi} describes Differentiable Permutational Isomerization Reactions 

n-p\ • • 

r2 -p2 • • 

r\n\-Pi 
r\nyVi 

ri-Pn\i\R\ n-pn\i\R\ 1"\R\ -Pn\l\R\ 

This matrix will have \R\ columns and n! elements. 
Hence the number of rows, i.e., the number of different 
right cosets, is n\j\R\. We arbitrarily select one ele­
ment from each coset and combine all these elements to 
form a set C. Each cteC represents a unique permuta­
tional isomer; C is called the set of coset representatives. 

Next consider a set of «!/(/?) points, where each point 
represents a permutational isomer and is labeled by an 
element C^C. Let directed lines (arrows) connecting 
these points represent permutational isomerization re­
actions; i.e., a directed line passes from ct to ct if and 
only if a permutational isomerization reaction p0 im­
plied by some rearrangement mechanism converts the 
isomer represented by c, into the isomer represented by 

A rearrangement mechanism does not in general 
uniquely define a permutational isomerization reaction. 
This is because a mechanism describes the pathway of a 
rearrangement while a permutational isomerization re­
action defines a rearrangement solely in terms of a re-
actant isomer (initial configuration) and a product 
isomer (final configuration), ignoring any intermediate 
configurations. Figure 3 shows two permutational 
isomerization reactions, (1453)(2) and (123)(45), either 
of which may be chosen as a permutational isomeriza­
tion reaction implied by the Berry mechanism.11 It 
also emphasizes that the arrows used to describe per­
mutational isomerization reactions do not unambig­
uously define physical motions. 

If directed topological representations are well de­
fined, then two permutations p0 and p0' must generate 
the same directed topological representation if they are 
implied by the same mechanism. We assume of course 
that the connectivity4 of any intermediate configura­
tion implied by the mechanism is two. Specifically, 
given two permutations p0 and p0' there exists a rela­
tionship between p0 and p0' that will establish whether 
or not their respective directed topological representa­
tions T and T' are identical. The following theorem 
states such a relationship. 

Theorem. Let C be a set of coset representatives. 
Let T and T' be two directed topological representations 

(11) R. S. Berry, / . Chem. Phys., 32, 933 (1960). 
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p, = ( l 4 5 3 ) ( 2 ) El-

Ill III 

BERRY 

MECHANISM 

D 

III III 

D, = (123X45) 8 N 

Figure 3. Two permutational isomerization reactions implied by 
the Berry mechanism. Skeletal positions are labeled as in Figure la. 

generated by the permutational isomerization reac­
tions pd and p0', respectively. Then T and T' are iden­
tical if and only if 

Po' rP-p0-rt rv,rqtR (2) 

where R is the permutation group representing rota­
tions, as denned above. 

Proof. The directed topological representations T 
and T' are identical if all the points connected by di­
rected lines in T are also connected by directed lines in 
T' and vice versa. More precisely, T and T' are identi­
cal when eq 1 holds if and only if eq 3 holds for all 
identical pairs c,-,c36C and some rk,rhrm,rntR. 

Po ' fm ' C1- — Tn- Cj (3) 

In the first part of the proof we wish to establish that 
given eq 1 we can proceed to eq 3 if eq 2 holds. First, 
eq 2 is rewritten 

Pa = rp-
1-p0'-rf1 (4) 

Substituting eq 4 into eq 1 

rv-
l-po'-r<rl-rk-ct = rvc, (5) 

Operating on both sides of eq 5 with rp, eq 6 is obtained. 

Po'-rk-
l-rk-Ci = rP-r1-cj (6) 

Now let rm = rQ~l-rk and rn = rv-rh where rm and rn 

are also in the group R. Substituting these into eq 6 
we obtain eq 3. The above arguments can of course 
be used to show that eq 3 and 2 imply eq 1. 

To complete the proof we show that if eq 1 and 3 are 
assumed, then eq 2 must hold true. Letting rt — 
rt-rn~

l and multiplying both sides of eq 3 by r„ we ob­
tain 

r~fPo'-rm-ct = rvCj (7) 

Equations 1 and 7 may be combined to yield 

r,- po' -T7n-Ct = p0-rk-Ci (8) 

Figure 4. Five differentiable permutational isomerization reactions 
of a Dn molecule in a chiral environment. Skeletal positions are 
labeled as in Figure la. 

Equation 8 is now multiplied by r,~l, ct~
l, and rm~l in 

the following manner 

rcx-rt-po'-rm-Ci-c-x-r„ry 

rr1-po-rk-ci-ci-
1'rm~1 (9) 

This reduces to 

Po' = rcl-po-rk-rm (10) 

Letting r„ = rk.rm~l and rv — rr1 in eq 10, we obtain 
eq 2 and the proof is complete. 

Two permutational isomerization reactions p0 and 
Po' are defined as nondifferentiable in a chiral environ­
ment if eq 2 holds and as differentiable in a chiral en­
vironment if eq 2 does not hold.6 A number DR' has 
been defined as the number of differentiable permuta­
tional isomerization reactions in a chiral environment; 
formulas for calculation of DR' have been derived.6 

Therefore for any system of permutational isomers, if 
we produce a set of DR' permutational isomerization 
reactions formally differentiable in a chiral environ­
ment, we can be assured that any other permutational 
isomerization reaction will be formally nondifferentiable 
from one of these DR' reactions in a chiral environ­
ment. An example is shown in Figure 4 for a five-co­
ordinate D1n molecule (DD/ = 5).6 Once we have 
drawn the five directed topological representations 
generated by the reactions shown in Figure 4, we are 
assured that any other permutation in S5 will generate 
a directed topological representation identical with one 
of those already constructed. 

Conventional Topological Representations 

For a six-coordinate octahedral molecule, Z)0' = 6. 
A set of six permutational isomerization reactions 
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differentiate in a chiral environment is shown in Figure 
5. It is disconcerting to our chemical intuition that the 
permutation (123)(4)(5)(6) and the permutation (132)-
(4)(5)(6) for the "reverse" reaction are both included 
in this figure. This situation stems from the definition 
of directed topological representation since "right-
handed" and "left-handed" reactions are formally 
differentiable in a chiral environment. To circumvent 
this distinction, we wish to modify our definition such 
that these reactions are considered one and the same 
process. This new definition should also be in con­
cord with the conventional definition4 of topological 
representations insofar as lines, not directed lines, 
connect points representing isomers. 

Let G be the permutation group representing the full 
molecular point group G'. Operations in G permute 
indices of the skeletal positions. In Figure 5, G' = 
Oh. An improper operation in G', namely a reflection 
operation, transforms the arrows describing p, = 
(123)(4)(5)(6) into the arrows describing p, = (132)-
(4)(5)(6). Another way of describing this equivalence 
is P1 = gt-Pi-gr1, where gi = (1)(23)(4)(56).12 We 
say that p} is a "mirror image" of p(. In general, a 
"mirror image" of a permutational isomerization re­
action pn is defined aspm = gi-pn-gi~l where gteG rep­
resents an improper operation in G'.13 We now have 
sufficient background to define a conventional topo­
logical representation. 

A topological representation is a labeled graph where 
each labeled point represents a permutational isomer 
and each line represents a permutational isomerization 
reaction. Each point is labeled by a coset representa­
tive dtC. Points Cj and C1 are connected by a line if 
eq 11 and/or eq 12 hold for some rhrm,rn>rvtR. Here, 

(a) 

ri-Cj = wk-rm-d 

rn-Ci = wk-rv-Cj 

(H) 

(12) 

wk is either the permutation p0 or a "mirror image" of 
Po. In other words, points representing isomers ct and 
Cj are connected by a line if the permutational isomeri­
zation reaction pQ or its "mirror image" converts one 
isomer into the other.14 

Using the arguments presented in the theorem of the 
previous section, it can be shown that the permutations 
Po and po' will generate identical topological representa­
tions if (a) po and po' are formally nondifferentiable in a 
chiral environment or (b) p0~

l and/?0 ' are nondifferen­
tiable in a chiral environment or (c) any "mirror 
image" of p0' is formally nondifferentiable from p0 or 
Po*1 in a chiral environment. This means that there 
may be less than DR' different topological representa­
tions for a given system of isomers. DB', however, 
does place an upper limit on the number of reactions 
which generate different topological representations. 

In Figure 5, (16)(2)(3)(45) is a "mirror image" of 
(15)(2)(3)(46). Also, (123)(4)(5)(6) and (132)(4)(5)(6) 

(12) For discussion of this equivalence relation, see F. A. Cotton, 
"Chemical Applications of Group Theory," Interscience, New York, 
N. Y1, 1963, p 48. 

(13) "Mirror image" is written in quotes because gi does not neces­
sarily represent a reflection operation in G' but may represent any im­
proper operation in G'. 

(14) The present definition of topological representations differs from 
the conventional definition4 only in that "mirror images" are not dif­
ferentiated. The new definition is warranted by its more operational 
character. Of course the original definition4 also covers a wider class 
of isomerization reactions, namely, polytopal rearrangements in general. 

(I2H3)(4)(5)(61 1^ 
• C E * 

i ' ' B (l4K2)(3)15H6j F - . , 

'C E ^ 

,--B (16)121(31(45) t
 A - - v 

^ C D 

,,- 'B (IS)(2)(3)(46)t D--

^ C A^" 

-B (I23)(4)(5)(6)_ F - - v 

^C Z 

V B (I32)(4)(5)(6) t
 F - - . 

^ C E ^ 

Figure 5. The illustration (a) defines the indexing of positions on 
an octahedral skeletal framework; (b) lists six differentiable permuta­
tional isomerization reactions in a chiral environment. 

are "mirror images." Consequently there exist only 
four permutational isomerization reactions which gen­
erate different topological representations for the six 
coordinate octahedral case. 

Consulting Figure 4, it is evident that each reaction, 
its inverse, and its mirror image are formally nondiffer­
entiable in a chiral environment. There exist therefore 
only five permutational isomerization reactions which 
generate different topological representations for the 
five-coordinate trigonal-bipyramidal case. 

Conclusions 

If a property of chemical compounds undergoing 
permutational isomerization reactions is defined in 
terms of a topological representation, the results of this 
paper may be extended. For example, a stereochem­
ical matrix4 may be defined in terms of a topological 
representation. Therefore DR' places an upper limit 
on the number of permutational isomerization reac­
tions which generate different stereochemical matrices. 

Closure properties4 may also be defined in terms of 
topological representations. A system of n\j\R\ per­
mutations isomers is said to be closed if all isomers may 
be interconverted by repeated operation of the permu­
tational isomerization reaction in question. In the 
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topological representation of a closed system, any two 
points will thus be connectable by a series of lines, i.e., 
a chain.4 Such a topological representation is said to 
be connected. Conversely, connected topological rep­
resentations represent closed stereochemical systems of 
permutational isomers. Since nondifferentiable reac­
tions generate identical topological representations, 
nondifferentiability implies identical closure properties. 
For example, ifp0 generates a closed stereochemical sys­
tem andpo' is not differentiate from^0 in a chiral envi­
ronment, then po' also generates a closed stereochem­
ical system. 

It has been suggested that aliphatic radicals, usually 
produced by hydrogen abstraction reactions, are 

relatively strong reducing agents.1-4 Such radicals 
have been shown to reduce different organic com­
pounds1 - 3 and metal cations46 both in organic and 
aqueous media. It has been shown that the specific 
rate of reduction depends on the structure of the rad­
icals. Radicals a to a hydroxylic or amino group 
being relatively strong reducing agents whereas radicals 
a to a carboxylic group were shown to be less reactive. 
It has been suggested that many of these reduction reac­
tions take place via an outer-sphere electron-transfer 
mechanism.6 

Organic compounds are often used7 as hydroxyl rad­
ical scavengers when reactions of e a q

- or hydrogen 
atoms are studied in radiation chemistry.7 However, 
relatively little is known on the chemical properties of 
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(5) H. E. DeLaMare, J. K. Kochi, and F. F. Rust, / . Amer. Chem. 

Soc, 85, 1437 (1963). 
(6) F. Basolo and R. G. Pearson, "Mechanism of Inorganic Re­

actions," Wiley, New York, N. Y., 1967, p 471. 
(7) M. S. Matheson and L. M. Dorfman, "Pulse Radiolysis," MIT 

Press, Cambridge, Mass., 1969. 

Brocas' kinetic treatment of permutational isomeriza-
tion reactions15 is based on topological representations. 
One can easily show that if two reactions generate the 
same topological representation, their eigenvectors (as 
defined by Brocas) must be the same. 

The concepts developed in this paper are thus seen to 
be useful for the description and solution of many 
problems in dynamic stereochemistry. 
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the radicals formed. This is believed to be of major 
importance in radiobiological systems, where most of 
the secondary intermediates are expected to be aliphatic 
radicals. 

The reduction of cobalt(III) and ruthenium(IIl) 
hexaammine complexes proceeds always via the outer-
phere mechanism.8 The only exception to this rule, 
suggested in the literature, is for the reduction of Co-
(NHj)S3+ by OH radicals, which was suggested to pro­
ceed via hydrogen abstraction from the ammine groups.9 

It will be shown that this mechanism does not apply for 
the radical reactions described in this study. We have 
decided to measure the specific rates of reduction of the 
latter complexes by several aliphatic radicals, with the 
hope of achieving a better understanding of their prop­
erties as outer-sphere reducing agents. 

Experimental Section 
Materials. All solutions were prepared from triple distilled 

water. Cobalt(III) hexaammine perchlorate was precipitated with 
perchloric acid from a solution of [Co(NH3)6]Cl3, supplied by 
K & K. The precipitate was purified by two recrystallizations 
from water. Ruthenium hexaammine chloride from Johnson, 

(8) H. Taube and E. S. Gould, Accounts Chem. Res., 2, 321 (1969). 
(9) D. Katakis and A. O. Allen, / . Phys. Chem., 68, 1359 (1964). 
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Ruthenium (III) Hexaammine Complexes by Several 
Aliphatic Radicals 
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Abstract: The specific rates of reaction of several aliphatic radicals with Co(NH3)6
3+ and Ru(NHj)6

5+ were 
determined. Radicals on the a carbon relative to OH or NH2 groups were shown to be stronger reducing agents 
than radicals on the a carbon to a carboxylic or an amide group. The reactivity of the radicals CH2OH, CH3-
CHOH, (CH3)2COH, CH3COHCOO-, and CH3COC(0-)CH3, toward Ru(NH3)6

3+ increases along this series, 
whereas the reversed order of reactivities is found for the reactions with Co(NH3)6

3+ and Cuaa
2+. This order is 

different from the order of reactivities toward nitrobenzene and 2,3-butanedione where the reactivity increases 
along the series CH3COHCO2-, CH2OH, CH3CHOH, and (CH3)2COH. The latter order is identical with that of 
increasing pK of the OH group. The results are interpreted as suggesting that the contribution of r character to the 
orbital containing the unpaired electron in the radical significantly affects the specific rates of reactions. The im­
plication of the results in radiobiology is discussed. 
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